Microbially Driven Redox Reactions in Anoxic Environments: Pathways, Energetics, and Biochemical Consequences
نویسنده
چکیده
After consumption of molecular oxygen, anaerobic microbial communities can use a continuum of alternative electron acceptors such as nitrate, manganese oxides, iron oxides, sulfate or CO2, with decreasing spans of available free energy. The electron transfer to insoluble metal oxides or to partner organisms such as methanogens may require the employment of electron carrier systems such as soil organic matter or sulfur compounds, with consequences for the reaction kinetics. The redox potentials of the electron acceptor systems do not only influence the reaction energetics but may also determine the pathways of degradation, especially in the degradation of organic contaminants. These aspects are discussed with examples of aromatic compounds, in particular phenols and cresols. The results demonstrate that beyond the mere lack of oxygen availability also the redox potential of the electron acceptor system in play determines to a large extent the kinetics, energetics and biochemistry of anaerobic transformation processes.
منابع مشابه
Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches.
Microbially mediated terminal electron accepting processes (TEAPs) to a large extent control the fate of redox reactive elements and associated reactions in anoxic soils, sediments, and aquifers. This review focuses on thermodynamic controls and regulation of H2-dependent TEAPs, case studies illustrating this concept, and the quantitative description of thermodynamic controls in modeling. Other...
متن کاملMicrobial iron-redox cycling in subsurface environments.
In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic couple...
متن کاملIron Sulfide-arsenite Interactions: Adsorption Behavior onto Iron Monosulfides and Controls on Arsenic Accumulation in Pyrite
Arsenic mobility in natural systems is often linked to iron and sulfur cycling at redox boundaries, apparently due to co-precipitation reactions of arsenic with poorly crystalline iron (oxy)hydroxides, iron monosulfides, and pyrite (e.g., Edenborn et al., 1986; Moore et al., 1988). The mobility of arsenic under anoxic, sulfate-reducing conditions is expected to be governed by interactions betwe...
متن کاملThe key role of the redox status in regulation of metabolism in photosynthesizing organisms.
The redox status of the cell is described by the ratio of reduced to non-reduced compounds. Redox reactions which determine the redox state are an essential feature of all living beings on Earth. However, the first life forms evolved under strongly anoxic conditions of the young Earth, and the redox status probably was based on iron and sulphur compounds. Nowadays, redox reactions in cells have...
متن کاملCorrosion of iron by sulfate-reducing bacteria: new views of an old problem.
About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are...
متن کامل